Tuesday, 26 September 2017

Web Data Extraction

The Internet as we know today is a repository of information that can be accessed across geographical societies. In just over two decades, the Web has moved from a university curiosity to a fundamental research, marketing and communications vehicle that impinges upon the everyday life of most people in all over the world. It is accessed by over 16% of the population of the world spanning over 233 countries.

As the amount of information on the Web grows, that information becomes ever harder to keep track of and use. Compounding the matter is this information is spread over billions of Web pages, each with its own independent structure and format. So how do you find the information you're looking for in a useful format - and do it quickly and easily without breaking the bank?

Search Isn't Enough

Search engines are a big help, but they can do only part of the work, and they are hard-pressed to keep up with daily changes. For all the power of Google and its kin, all that search engines can do is locate information and point to it. They go only two or three levels deep into a Web site to find information and then return URLs. Search Engines cannot retrieve information from deep-web, information that is available only after filling in some sort of registration form and logging, and store it in a desirable format. In order to save the information in a desirable format or a particular application, after using the search engine to locate data, you still have to do the following tasks to capture the information you need:

· Scan the content until you find the information.

· Mark the information (usually by highlighting with a mouse).

· Switch to another application (such as a spreadsheet, database or word processor).

· Paste the information into that application.

Its not all copy and paste

Consider the scenario of a company is looking to build up an email marketing list of over 100,000 thousand names and email addresses from a public group. It will take up over 28 man-hours if the person manages to copy and paste the Name and Email in 1 second, translating to over $500 in wages only, not to mention the other costs associated with it. Time involved in copying a record is directly proportion to the number of fields of data that has to copy/pasted.

Is there any Alternative to copy-paste?

A better solution, especially for companies that are aiming to exploit a broad swath of data about markets or competitors available on the Internet, lies with usage of custom Web harvesting software and tools.

Web harvesting software automatically extracts information from the Web and picks up where search engines leave off, doing the work the search engine can't. Extraction tools automate the reading, the copying and pasting necessary to collect information for further use. The software mimics the human interaction with the website and gathers data in a manner as if the website is being browsed. Web Harvesting software only navigate the website to locate, filter and copy the required data at much higher speeds that is humanly possible. Advanced software even able to browse the website and gather data silently without leaving the footprints of access.

The next article of this series will give more details about how such softwares and uncover some myths on web harvesting.


Article Source: http://EzineArticles.com/expert/Thomas_Tuke/5484

Friday, 15 September 2017

Data Collection - Make a Plan

Planning for the data collection activity provides a stable and reliable data collection process in the Measure phase.

A well-planned activity ensures that your efforts and costs will not be in vain. Data collection typically involves three phases: pre-collection, collection and post-collection.

Pre-collection activities: Goal setting and forming operational definitions are some of the pre-collection activities that form the basis for systematic and precise data collection.

1.  Setting goals and objectives: Goal setting and defining objectives is the most important part of the pre-collection phase.

It enables teams to give direction to the data to be collected. The plan includes description of the Six Sigma project being planned. It lists out specific data that is required for the further steps in the process.

If there are no specific details as to the data needs, the data collection activity will not be within scope - and may become irrelevant over a period of time.

The plan must mention the rationale of data being collected as well as the final utilization.

2.  Define operational definitions: The team must clearly define what and how data has to be collected. An operational definition of scope, time interval and the number of observations required is very important.

If it mentions the methodology to be used, it can act a very important guideline to all data collection team members.

An understanding of all applicable information can help ensure that there no misleading data is collected, which may be loosely interpreted leading to a disastrous outcome.

3.  Repeatability, stability and accuracy of data: The repeatability of the data being collected is very important.

This means that when the same operator undertakes that same activity on a later date, it should produce the same output. Additionally, it is reproducible if all operators reach the same outcome.

Measurement systems should be accurate and stable, such that outcomes are the same with similar equipment over a period of time.

The team may carry out testing to ensure that there is no reduction in these factors.

Collection Activity

After planning and defining goals, the actual data collection process starts according to plan. Going by the plan ensures that teams achieve expected results consistently and accurately.

Training can be undertaken so as to ensure that all data collection agents have a common understanding of data being collected. Black Belts or team leaders can look over the process initially to provide any support needed.

For data collection over a longer period, teams need to ensure regular oversight to ensure that no collection activities are overlooked.

Post collection activities

Once collection activities are completed, the accuracy and reliability of the data has to be reviewed.

Source: http://ezinearticles.com/?Data-Collection---Make-a-Plan&id=2792515

Tuesday, 25 July 2017

How We Optimized Our Web Crawling Pipeline for Faster and Efficient Data Extraction

How We Optimized Our Web Crawling Pipeline for Faster and Efficient Data Extraction

Big data is now an essential component of business intelligence, competitor monitoring and customer experience enhancement practices in most organizations. Internal data available in organizations is limited by its scope, which makes companies turn towards the web to meet their data requirements. The web being a vast ocean of data, the possibilities it opens to the business world are endless. However, extracting this data in a way that will make sense for business applications remains a challenging process.

The need for efficient web data extraction

Web crawling and data extraction is something that can be carried out through more than one route. In fact, there are so many different technologies, tools and methodologies you can use when it comes to web scraping. However, not all of these deliver the same results. While using browser automation tools to control a web browser is one of the easier ways of scraping, it’s significantly slower since rendering takes  a considerable amount of time.

There are DIY tools and libraries that can be readily incorporated into the web scraping pipeline. Apart from this, there is always the option of building most of it from scratch to ensure maximum efficiency and flexibility. Since this offers far more customization options which is vital for a dynamic process like web scraping, we have a custom built infrastructure to crawl and scrape the web.

How we cater to the rising and complex requirements

Every web scraping requirement that we receive each day is one of a kind. The websites that we scrape on a constant basis are different in terms of the backend technology, coding practices and navigation structure. Despite all the complexities involved, eliminating the pain points associated with web scraping and delivering ready-to-use data to the clients is our priority.

Some applications of web data demand the data to be scraped in low latency. This means, the data should be extracted as and when it’s updated in the target website with minimal delay. Price comparison, for example requires data in low latency. The optimal method of crawler setup is chosen depending on the application of the data. We ensure that the data delivered actually helps your application, in all of its entirety.

How we tuned our pipeline for highly efficient web scraping

We constantly tweak and tune our web scraping infrastructure to push the limits and improve its performance including the turnaround time and data quality. Here are some of the performance enhancing improvements that we recently made.

1. Optimized DB query for improved time complexity of the whole system

All the crawl stats metadata is stored in a database and together, this piles up to become a considerable amount of data to manage. Our crawlers have to make queries to this database to fetch the details that would direct them to the next scrape task to be done. This usually takes a few seconds as the meta data is fetched from the database. We recently optimized this database query which essentially reduced the fetch time to merely a fraction of seconds from about 4 seconds. This has made the crawling process significantly faster and smoother than before.

2. Purely distributed approach with servers running on various geographies

Instead of using a single server to scrape millions of records, we deploy the crawler across multiple servers located in different geographies. Since multiple machines are performing the extraction, the load on each server will be significantly lower which in turn helps speed up the extraction process. Another advantage is that certain sites that can only be accessed from a particular geography can be scraped while using the distributed approach. Since there is a significant boost in the speed while going with the distributed server approach, our clients can enjoy a faster turnaround time.

3. Bulk indexing for faster deduplication

Duplicate records is never a trait associated with a good data set. This is why we have a data processing system that identifies and eliminates duplicate records from the data before delivering it to the clients. A NoSQL database is dedicated to this deduplication task. We recently updated this system to perform bulk indexing of the records which will give a substantial boost to the data processing time which again ultimately reduces the overall time taken between crawling and data delivery.

Bottom line

As web data has become an inevitable resource for businesses operating across various industries, the demand for efficient and streamlined web scraping has gone up. We strive hard to make this possible by experimenting, fine tuning and learning from every project that we embark upon. This helps us maintain a consistent supply of clean, structured data that’s ready to use to our clients in record time.

Source:https://www.promptcloud.com/blog/how-we-optimized-web-scraping-setup-for-efficiency

Monday, 26 June 2017

How Data Mining Has Shaped The Future Of Different Realms

The work process of data mining is not exactly what its name suggests. In contrast to mere data extraction, it's a concept of data analysis and extracting out important and subject centred knowledge from the given data. Huge amounts of data is currently available on every local and wide area network. Though it might not appear, but parts of this data can be very crucial in certain respects. Data mining can aid one in moldings one's strategies effectively, therefore enhancing an organisation's work culture, leading it towards appreciable growth.

Below are some points that describe how data mining has revolutionised some major realms.

Increase in biomedical researches

There has been a speedy growth in biomedical researches leading to the study of human genetic structure, DNA patterns, improvement in cancer therapies along with the disclosure of factors behind the occurrence of certain fatal diseases. This has been, to an appreciable extent. Data scraping led to the close examination of existing data and pick out the loopholes and weak points in the past researches, so that the existing situation can be rectified.

Enhanced finance services

The data related to finance oriented firms such as banks is very much complete, reliable and accurate. Also, the data handling in such firms is a very sensitive task. Faults and frauds might also occur in such cases. Thus, scraping data proves helpful in countering any sort of fraud and so is a valuable practice in critical situations.

Improved retail services

Retail industries make a large scale and wide use of web scraping. The industry has to manage abundant data based on sales, shopping history of customers, input and supply of goods and other retail services. Also, the pricing of goods is a vital task. Data mining holds huge work at this place. A study of degree of sales of various products, customer behaviour monitoring, the trends and variations in the market, proves handy in setting up prices for different products, bringing up the varieties as per customers' preferences and so on. Data scraping refers to such study and can shape future customer oriented strategies, thereby ensuring overall growth of the industry.

Expansion of telecommunication industry

The telecom industry is expanding day by day and includes services like voicemail, fax, SMS, cellphone, e- mail, etc. The industry has gone beyond the territorial foundations, including services in other countries too. In this case, scraping helps in examining the existing data, analyses the telecommunication patterns, detect and counter frauds and make better use of available resources. Scraping services generally aims to improve the quality of service, being provided to the users.

Improved functionality of educational institutes

Educational institutes are one of the busiest places especially the colleges providing higher education. There's a lot of work regarding enrolment of students in various courses, keeping record of the alumni, etc and a large amount of data has to be handled. What scraping does here is that it helps the authorities locate the patterns in data so that the students can be addressed in a better way and the data can be presented in a tidy manner in future.

Article Source: https://ezinearticles.com/?How-Data-Mining-Has-Shaped-The-Future-Of-Different-Realms&id=9647823

Wednesday, 21 June 2017

Things to Factor in while Choosing a Data Extraction Solution

Things to Factor in while Choosing a Data Extraction Solution

Customization options

You should consider how flexible the solution is when it comes to changing the data points or schema as and when required. This is to make sure that the solution you choose is future-proof in case your requirements vary depending on the focus of your business. If you go with a rigid solution, you might feel stuck when it doesn’t serve your purpose anymore. Choosing a data extraction solution that’s flexible enough should be given priority in this fast-changing market.

Cost

If you are on a tight budget, you might want to evaluate what option really does the trick for you at a reasonable cost. While some costlier solutions are definitely better in terms of service and flexibility, they might not be suitable for you from a cost perspective. While going with an in-house setup or a DIY tool might look less costly from a distance, these can incur unexpected costs associated with maintenance. Cost can be associated with IT overheads, infrastructure, paid software and subscription to the data provider. If you are going with an in-house solution, there can be additional costs associated with hiring and retaining a dedicated team.

Data delivery speed

Depending on the solution you choose, the speed of data delivery might vary hugely. If your business or industry demands faster access to data for the survival, you must choose a managed service that can meet your speed expectations. Price intelligence, for example is a use case where speed of delivery is of utmost importance.

Dedicated solution

Are you depending on a service provider whose sole focus is data extraction? There are companies that venture into anything and everything to try their luck. For example, if your data provider is also into web designing, you are better off staying away from them.

Reliability

When going with a data extraction solution to serve your business intelligence needs, it’s critical to evaluate the reliability of the solution you are going with. Since low quality data and lack of consistency can take a toll on your data project, it’s important to make sure you choose a reliable data extraction solution. It’s also good to evaluate if it can serve your long-term data requirements.

Scalability

If your data requirements are likely to increase over time, you should find a solution that’s made to handle large scale requirements. A DaaS provider is the best option when you want a solution that’s salable depending on your increasing data needs.

When evaluating options for data extraction, it’s best keep these points in mind and choose one that will cover your requirements end-to-end. Since web data is crucial to the success and growth of businesses in this era, compromising on the quality can be fatal to your organisation which again stresses on the importance of choosing carefully.

Source:https://www.promptcloud.com/blog/choosing-a-data-extraction-service-provider

Friday, 16 June 2017

Benefits with Web Data Scraping Services

Web scraping in simple words is that you can extract data from any website and it is quite similar to web harvesting.

Online business has become so popular due to the increase in number of internet users. One of the main benefits of online business is that it is cheap and it is easily accessible. This has become very tough and a competitive field. Hence it is important that each should exhibit high performance in order to survive here. Today most of the online business depends on web data scraping for better performance.

The benefits with web data scraping services are:

•    An unstructured data can be transformed into suitable form and it can be stored as spreadsheet or as a database
•    It provides data which are informational
•    Some of the websites provide free access and hence you can save money
•    It helps to save time and energy. If it is done by manpower, it will take more time to do because they need to go through the websites and that can be time consuming.
•    The results provided are accurate. It will provide the exact result required instead of providing the related data.

With web scraping benefits you can scrape any kind of data without much trouble and can be delivered in whichever format you like MYSQL, EXCEL, CSV, XML etc. All you need to do is suggest the website from where you require the data.

So whether your business is big or small you can rely on these web scraping services for getting different types of data scraping. With web scraping you can even know the upcoming market and trends. You can even assume the strategies and plans of your competitor. This helps to take important decision at an appropriate time. This is an important step in any business whether it is big or small. Some of the companies even offer free trial service offer. You don’t need to make the payment in advance. When the work is done and if you are completely satisfied only then you need to do the payment.

Most of the companies use advanced data scraping tools and provides quality services. So you can be assured that the money you are paying is worthwhile. The information that you give to them will be kept strictly confidential. You can absolutely trust these companies for your business requirements.

To discuss web data scraping requirement, email at info@www.web-scraping-services.com.

Source Url :-http://3idatascraping.weebly.com/blog/benefits-with-web-data-scraping-services

Thursday, 8 June 2017

4 Tools That Makes Web Data Extraction Easy

There is a huge amount of data available on the World Wide Web. Organizations and individuals find this information useful and often have to make use of it for various purposes. Traditionally, web data is retrieved by browsing and keyword searching. These methods are purely intuitive, the searches can return vast amount of unnecessary data, and it can take quite a bit of time before the searchers find what they are looking for. This data is sometimes hard to manipulate and work on as it is done in traditional databases.

But web pages written in mark-up languages like HTML and XHTML contain a wealth of knowledge. They also provide the structures that make data manipulation and analysis so easy. To extract this data some easily usable applications have been built. Though people who know nothing about coding can use some of these applications, it is always advisable to take the help of data extraction experts for help with such work, to obtain best results.

4  Tools to Improve your Web Data Extraction Efforts:

Uipath:

One of the popular web scraping applications is offered by the software automation and application integration company, Uipath. They offer free trials and also live demos for new users and potential customers. They offer website scraping from HTML, XML, AJAX, Java applets, Flash, Silverlight and PDF. Their application has powerful data transformation features and enables deduplication with SQL and LINQ queries.
Once the data has been extracted, it can be exported to various outputs like Microsoft Excel, CSV, .NET DataTable and so on. Automations can be done with web login, navigation, and even filling of forms.
This application is good for non-coders and can even be used to manipulate the interface of another application so that data transfer can take place between the two of them.
The price tag might be a tad high for individual users, but is worth it if you want a fast, accurate and simple application.

Import.io:

 Import.io offers to “instantly turn web pages into data”. They advertise their service saying that the customer does not need plugin, training or setup. Users can create custom APIs and crawl entire websites by using their desktop application. The best part is that no coding knowledge is required. Users can scrap data from an unlimited number of web pages. For the service, each page is a source that holds great potential to source application programming interface.
The extracted data is stored on Import.io’s cloud servers. It can then be downloaded in different formats that include CSV, Google sheets, Microsoft Excel and many more. The generated API enables users to integrate live web data with their own applications, third party analytics and visualization software without much difficulty. Though users do not need much technical skills to operate this service, the extraction reports arrives a good 24 hours after the request has been submitted.

Kimono:

The task of building an API to power applications, models and visualizations using live data and without the benefit of any code is done in seconds by Kimono. The service has a smart extractor. It recognizes patterns in web content. This enables the user to get the data that he or she wants, quickly and visually. The extracted APIs are hosted on a cloud. They are then run as per the schedule that is convenient for the user. While there is no problem with either the speed or the accuracy of Kimono, there is a lack of availability of page navigation, and the system requires some training before it begins to function at full capability.

Screen Scraper:

Like the other above-mentioned services, Screen Scraper works well with HTML and Javascript, extracts data precisely and provides the data in Excel and CSV fomat. However, it requires the user to have some coding skills. Only then can it be used to its optimum functionality. Even though the user will have to shell out a bit of money to use Screen Scraper, the service can handle almost any data extraction task with ease.

Source Url:-https://www.invensis.net/blog/data-processing/4-tools-makes-web-data-extraction-easy/